Scroll to top
Связь с нами
Украина, Киев
info@iproweb.org
Тел: +38 (073) 884-82-98
Запросы по работе
da@iproweb.org
Тел: +38 (097) 884-82-98

Сквозная аналитика и кастомная модель атрибуции для среднего и малого бизнеса без программирования

Несмотря на большое количество систем сквозной аналитики, у всех из них есть недостатки: цена, процесс интеграции, настройка. Даже в крупных отраслях, таких, как недвижимость, не каждый клиент готов выделять на это дополнительные ресурсы.

Поэтому для одной из девелоперских компаний в Петербурге мы решили самостоятельно выстроить систему сквозной аналитики и кастомную модель атрибуции, которую можно корректировать в зависимости от особенностей бизнеса и поставленных задач.

Как все работает

Чаще всего для аналитики вклада рекламных каналов в продажи используются звонки. Результатом становится примерная картина пути пользователя к сделке. Почему примерная? Потому что если вид продвигаемого товара или услуги подразумевает несколько касаний с рекламными кампаниями, то звонок может быть один, а посещений сайта больше. Как следствие, анализируя только звонки, мы теряем часть рекламных каналов, участвовавших в продаже.

В основу нашей аналитики лег ClientID — анонимный идентификатор, присваиваемый Яндекс.Метрикой каждому уникальному посетителю. Он хранит все сведения о действиях пользователя на сайте: о посещениях страниц, взаимодействии с рекламными кампаниями, совершении конверсий.

Благодаря ClientID мы видим более полную картину и можем точнее присваивать ценность каналам и кампаниям, так как фиксируется намного больше информации, чем просто звонок.

Еще одно преимущество — в конфиденциальности данных. Не каждый заказчик готов передать номера телефонов своих клиентов агентству из-за опасения, что они попадут к конкурентам. ClientID решает эту проблему.

Единственный минус или ограничение — в том, что за один раз можно указывать не более 100 идентификаторов, то есть за раз можно проанализировать поведение максимум 100 пользователей. Это обусловлено ограничением на количество параметров при использовании оператора (=.), подробнее об этом — в справке. Поэтому этот способ подходит бизнесу с небольшим количеством сделок и не моментальным спросом (в случае моментального спроса нет необходимости применять кастомную модель атрибуции, так как ~99% заказов происходят сразу после первого посещения сайта).

При большем количестве ClientID можно выгружать данные поэтапно, отдельными запросами, либо вместо сегментов использовать ClientID в качестве параметра запроса (dimensions).

Итогом построения системы аналитики и модели атрибуции станет таблица, в которой будет видна ценность каждого источника и кампании на пути к продаже. С ее помощью можно будет оптимизировать маркетинговые затраты, отказываясь от неэффективных размещений.

Пользовательская модель атрибуции предполагает, что специалист может самостоятельно выбрать, какую ценность назначить каналу или кампании первого и последнего визита на сайт. Это позволяет подстраиваться под конкретные задачи: увеличение верхнего уровня воронки, сосредоточение на самых конверсионных каналах.

Перед началом

Для подготовки к дальнейшей работе необходим перечень идентификаторов ClientID. Если планируется анализ продаж, то они выгружаются из CRM вместе с датой заключения сделки (о том, зачем нужна дата, станет понятно при создании модели атрибуции). Так как передача данных в каждой CRM может отличаться, подробности уточняйте у менеджеров поддержки CRM.

Все каналы, для которых планируется анализ, должны быть размечены UTM-метками. Обязательные параметры: utm_source, utm_medium, utm_campaign. Остальные параметры опциональны. Например, если планируется аналитика групп объявлений, ключевых слов, то в разметке должны содержаться соответствующие значения.

Banner

Создание запроса данных

Дальше необходимо составить запрос через API Яндекс.Метрики, так как веб-интерфейс системы аналитики позволяет фильтровать данные только по одному идентификатору. Когда ClientID больше десяти, процесс становится трудоемким.

Запрос составляется с помощью группировок и метрик. Подробнее с описанием группировок и метрик можно ознакомиться в справке.

Группировка (dimensions) — признак, по которому можно сгруппировать данные, например, браузер, кампания, тип устройства. В контексте нашей задачи нужно использовать группировку по ClientID и параметрам источника трафика.

Метрика (metrics) — это числовая величина, рассчитывается на основе атрибута хита или визита, к примеру: количество визитов, средняя глубина просмотра, коэффициент конверсии.

При создании запроса необходимо учитывать совместимость группировок и метрик. Чтобы задать запрос корректно, в начале названия группировок и метрик используются два варианта приставок:

  • хит — ym:pv:

  • визит — ym:s:

Пример готовой ссылки, которую мы будем использовать для отправки запроса:

https://api-metrika.yandex.net/stat/v1/data.csv?id=11111111&limit=1000&dimensions=ym:s:clientID,ym:s:date,ym:s:lastsignTrafficSource, ym:s:UTMSource,ym:s:UTMMedium,ym:s:UTMCampaign,ym:s:UTMTerm&metrics=ym:s:visits, ym:s:users&date1=2020-01-09&date2=today&filters=ym:s:clientID=.('1579067368','1584950989','1590578020','1590944830','1591214250')

Вместо единиц в параметре id нужно указать номер счетчика, а у вашего логина, который будет отправлять запрос, должен быть доступ на редактирование счетчика.

Используемые в ссылке параметры:

  • limit — лимит выгружаемых строк, число прописывается вручную, в зависимости от количества данных;
  • dimensions — перечисление группировок данных;
  • ym:s:clientID — параметр группировки данных, анонимный идентификатор пользователя;
  • ym:s:date — параметр группировки данных, дата визита;
  • ym:s:lastsignTrafficSource — параметр группировки данных, последний значимый источник;
  • ym:s:UTMSource — параметр группировки данных, рекламная система;
  • ym:s:UTMMedium — параметр группировки данных, тип трафика;
  • ym:s:UTMCampaign — параметр группировки данных, название рекламной кампании;
  • ym:s:UTMTerm — параметр группировки данных, ключевое слово;
  • metrics — перечисление метрик;
  • visits — метрика, количество визитов;
  • users — метрика, количество пользователей;
  • date1/date2 — период, за который мы выгружаем данные в формате YYYY-MM-DD (в том числе можно использовать ряд зарезервированных слов, например, today);
  • filters — фильтр, в данном случае фильтруем по ClientID;
  • ym:s:clientID, идущий после filters — это не параметр ссылки, а параметр вышеописанной переменной — filters — описывает сегмент, по которому выгружаются данные. Дословно можно перевести как «выгрузить данные по всем визитам только данных идентификаторов клиентов», далее — перечисление идентификаторов (до 100).

Затем нужно получить токен, чтобы указать, от какого логина отправляется запрос в API. Для этого необходимо зарегистрировать приложение на Яндекс.OAuth и отправить заявку на доступ к API. Всю информацию о получении токена можно найти в курсе по работе с API.

После генерации ссылки и получения токена можно отправлять запрос по API в Метрику для получения данных по ClientID.

Выгрузка и форматирование данных по ClientID

Для отправки запроса используем сайт ReqBin. С его помощью мы можем отправлять запросы по API в Метрику, не прибегая к программированию на JavaScript, Python или R.

Сквозная аналитика и кастомная модель атрибуции для среднего и малого бизнеса без программирования | iProWeb

Вставляем сгенерированную ссылку со списком ClientID, вставляем токен, нажимаем на кнопку Send. Готово. Вы прекрасны (на самом деле, еще не совсем).

Сквозная аналитика и кастомная модель атрибуции для среднего и малого бизнеса без программирования | iProWeb

Полученные данные нужно вставить в Excel и разбить по столбцам с помощью запятой. Так выглядят данные сразу после копирования их в Excel:

Сквозная аналитика и кастомная модель атрибуции для среднего и малого бизнеса без программирования | iProWeb

Выделяем столбец с данными, на панели инструментов выбираем «Текст по столбцам», в открывшемся окне «С разделителями».

Сквозная аналитика и кастомная модель атрибуции для среднего и малого бизнеса без программирования | iProWeb

Выбираем «Запятая» и жмем «Далее» — текст разбивается на столбцы.

Сквозная аналитика и кастомная модель атрибуции для среднего и малого бизнеса без программирования | iProWeb

Сортируем данные по столбцу ClientID и по Date of visit (от старых к новым), чтобы видеть путь пользователя к сделке в хронологическом порядке.

Сквозная аналитика и кастомная модель атрибуции для среднего и малого бизнеса без программирования | iProWeb

Теперь разберемся с магией создания модели атрибуции с помощью формул.

Создание модели атрибуции с помощью формул

Сначала нужно пронумеровать визиты каждого ClientID. Для этого используем формулу «ЕСЛИ»: если ClientID совпадает с идентификатором в предыдущей строке, то номер визита увеличивается на 1. Если не совпадает, значит, это первый визит в цепочке.

Сквозная аналитика и кастомная модель атрибуции для среднего и малого бизнеса без программирования | iProWeb

Формула: =ЕСЛИ(A3=A2;J2+1;1), где столбец А — перечень ClientID, J — предыдущий номер визита.

Затем вычисляем номер последнего визита с помощью этой же формулы. Формула в ячейке К2: =ЕСЛИ(A2=A3;K3;J2).

Следующие три столбца — распределение веса между визитами. Мы отдали по 40% первому и последнему, 20% распределили между остальными. Распределение можно менять по своему усмотрению.

Вес первому источнику задается всё той же формулой «ЕСЛИ». Если номер визита — 1, то ему отдается 40% (колонка L2): =ЕСЛИ(J2=1;40%;0). С последним источником аналогично — если номер визита равен номеру последнего визита, то отдаем 40% (колонка M2): =ЕСЛИ(K2=J2;40%;0).

И остается назначить ценность промежуточным каналам, разделив 20% на количество визитов между первым и последним. Если источника всего два, то 20% делятся между первым и вторым пополам. Если один, то весь вес уходит ему.

Формула: =ЕСЛИ(И(J2>1;J2<K2);20%/(K2-2);ЕСЛИ(И(ИЛИ(J2=1;J2=2);K2=2);10%;ЕСЛИ(И(J2=K2;J2=1);20%;0)))

Сквозная аналитика и кастомная модель атрибуции для среднего и малого бизнеса без программирования | iProWeb

Суммируем все три столбца — теперь вы точно прекрасны.

Фильтрация визитов, произошедших после продажи

После совершения сделки пользователи совершают визиты на сайт. В случае если такие визиты попадают в выгрузку, то им тоже назначается ценность, что не всегда корректно (зависит от того, как часто совершаются повторные покупки). Например, в недвижимости повторные покупки происходят очень редко, поэтому визиты на сайт после совершения сделки совершаются в основном с целью уточнения информации (номер телефона, отчет по строительству, выдача ключей). Однако если один пользователь может совершить несколько покупок с большой вероятностью, то каждый визит на сайт имеет значение, так как может привести к повторной сделке.

В нашем случае ценность визитам после сделки не нужна. Поэтому мы вручную добавляем в Excel столбец с датой продажи (Q). Далее мы сравниваем дату продажи и визита, и если визит был позже, то он не участвует в расчете ценности и отфильтровывается с помощью формулы =ЕСЛИ(B2<P2;1;0), где B — дата визита, P — дата продажи. Если дата визита больше даты продажи, то ячейке присваивается значение 0. Далее столбец «Проверка на дату» фильтруется по значению «0» и эти строки удаляются, чтобы не учитывать их в расчете.

Сквозная аналитика и кастомная модель атрибуции для среднего и малого бизнеса без программирования | iProWeb

Полученные данные можно подтянуть к расходам по каналам и кампаниям, визуализировать с помощью Google Data Studio или Power BI. Ниже — пример визуализации в Power BI со случайным набором данных, который не имеет ничего общего с реальными данными рекламодателей.

Сквозная аналитика и кастомная модель атрибуции для среднего и малого бизнеса без программирования | iProWeb

Несколько слов в заключение

Лучше всего этот способ анализа продаж и источников трафика подходит для отраслей с длинным циклом сделки и не очень большим количеством клиентов, например, для недвижимости, авто, ремонтных работ, небольших интернет-магазинов. В таком случае цепочка взаимодействий может быть более 1–2 визитов и есть возможность ограничиться 100 идентификаторами. При необходимости можно сделать несколько выгрузок, по 100 ClientID каждая. Сложности могут возникнуть, когда количество сделок в месяц превысит 1000 и будет неудобно выгружать ClientID сотнями.

Не подходит такой анализ для коротких сделок — касаний с рекламными кампаниями намного меньше, количество сделок — больше, разве что для анализа повторных продаж.

Источник статьи

На нашем сайте мы используем файлы cookies.