A/Б-тесты на сайте позволяют определить, какой вариант интерфейса приводит больше пользователей к целевому действию. Например: совершат они больше покупок с виджетом-счетчиком «За сегодняшний день этот товар приобрело Х пользователей» или когда такого виджета нет?
В статье разбираемся:
В CRM-маркетинге существуют десятки механик, чтобы стимулировать клиента к покупке или целевому действию. Разберем несколько показательных примеров.
Формы лидогенерации. Позволяют собирать базу контактов. Обычно выглядят как формы, в которых пользователя просят оставить email за определенную выгоду — подписаться и быть в курсе новых коллекций, получить разовый промокод на первую покупку или раздатку с эксклюзивным контентом. Такая форма всплывает, когда пользователь находится на сайте определенное время (это время можно задавать) или когда совершает определенные действия (например, клик или скролл).
Подписки на пуш-уведомления. Подписываясь, пользователь получает всплывающие уведомления от бренда, например, о новинках и акциях.
Ниже — персонализированный пуш от Puma. Контент зависит от региона, в котором находится пользователь. Алгоритм предлагает перейти на сайт и приобрести продукт: например, если в регионе солнечно — это будут солнцезащитные очки, если резко похолодало — теплые вещи.
Системы обратных звонков. Пользователь может оставить свой номер телефона, чтобы представитель компании перезвонил — так можно быстро получить развернутую консультацию от специалиста.
Виджеты social proof. Это счетчики просмотров или действий. Рассказывают, например, сколько пользователей просматривают товар в данный момент, и стимулируют к покупке.
Чат-боты. Позволяют быстро решить задачу пользователя: например, получить консультацию или ответ на стандартный вопрос, выбрать нужный тип продукта, узнать больше о компании.
Игровые механики. Это квизы, конкурсы, интерактивные виджеты и другие способы геймификации. Повышают вовлеченность, стимулируют совершить целевое действие благодаря увлекательности и предложению бонусов.
Все эти механики могут произвести вау-эффект и увеличить конверсию в покупку в разы, а могут, наоборот, отпугнуть потенциальных клиентов — например, если виджет слишком большой, агрессивный или навязчивый.
Понять, какая механика лучше сработает в случае с определенным продуктом и/или сегментом пользователей, помогают A/Б-тесты.
Сайт, на котором будем проводить исследование, с заранее установленными Google Analytics и GTM.
Предмет тестирования. Например, виджет подписки или social proof.
Гипотеза. Это предположение, которое проверяем. Например, что выбранный вариант сработает эффективно — увеличит конверсию и не повлияет негативно на другие метрики (проведенное пользователем время на сайте, глубину просмотра, показатели отказов, количество и объем заказов).
Шаблон отчета. В нем будут фиксироваться все данные об исследовании: когда начали, сколько времени исследовали, какие результаты получили и какие выводы сделали. Отчет систематизирует данные и помогает корректно подвести итоги исследования.
Инструмент для проведения тестов. С этой задачей помогут справиться решения от Retail Rocket Segment Builder, Popmechanic, Bloomreach, Google Optimize и ABTasty. Мы используем наш сервис Lead Plan.
Название корректно, если сегментов три. Если их два, это будет называться АА-тестом и так далее.
ААА-тест — обязательный шаг перед тем, как провести А/Б-тест. Пользователям будут показаны страницы сайта без изменений. Основная задача ААА-теста — проверить, будет ли эксперимент с текущими настройками равномерно распределять пользователей на одинаковые по весу сегменты: например, с равным количеством мужчин и женщин, равномерной покупательской активностью и длительностью сессий. Также он проверит, за какой срок пользователи равномерно распределятся по сегментам.
Нельзя рандомно распределить пользователей по трем группам и сразу проводить А/Б-тест — в этом случае в сегментах равным будет только количество пользователей, а параметры, например, длительность сессии, частота покупок, количество заказов — разные.
Чем дольше длится тест, тем более точными будут цифры, а наполнение сегментов всё больше похоже друг на друга. Мы рекомендуем приступать к А/Б-тесту, когда разница между исследуемыми показателями сегментов не будет превышать 1–2%. Обычно, если бренд крупный и посещаемость сайта высокая, для этого требуется 1,5–2 недели.
Последовательность действий для А/Б-теста:
Добавляем на каждую страницу сайта код, который будет присваивать пользователям идентификационный номер сегмента (например, «Сегмент 1», «Сегмент 2» или «Сегмент 3»). Это же справедливо и для ААА-теста.
Таргетируем механику, которую хотим изменить, на конкретный сегмент.
Собираем данные в Google Analytics — по каждому сегменту в систему аналитики будут передаваться данные о поведении пользователей.
По итогам анализируем результаты. ААА-тест, проведенный заранее, позволит понять, с какого периода (пока сегменты станут равномерными) данные будут корректны.
Полные технические инструкции по проведению теста вы найдете в справке инструмента, который выберете. Например, вот инструкции Google Optimize.
Например, если мы тестируем интернет-магазин, отфильтровать нужно менеджеров магазина, которые заходят на сайт десятки раз в день, — если в один сегмент попадет несколько менеджеров, в сегментации будет дисбаланс.
На исследование основных показателей в Яндекс Метрике достаточно одного часа. В статье мы покажем, как находить эти показатели и объясним,…
Рассказываем, какие интересные и полезные исследования вышли в мае 2022 года. Какие каналы для общения с клиентами выбирает бизнес —…
В мае Яндекс увеличил количество мест в товарной галерее и добавил два новых формата Большого баннера на главной. Директ…
Я пришел в digital 11 лет назад, когда учился в аспирантуре института биоорганической химии им. академиков М. М. Шемякина и Ю. А. Овчинникова. Тогда я просто…
Как сформулировать CTA, решает общий контекст коммуникации с пользователем. Какая формулировка сработает лучше, определяет тестирование. Но что…
Магазины в Telegram уже были давно. Как они выглядят и насколько удобны — другой вопрос. Некоторые из них — просто…