Regenbogen — фирменный интернет-магазин дизайнерских светильников и люстр из Германии и сеть мультимаркетов света. В России сеть представлена с 2012 года. Десять офлайн-точек работают в Москве, Санкт-Петербурге, Краснодаре и Ростове-на-Дону.
Перед проектной группой MediaGuru клиент поставил задачу — детализировать отчетность рекламных аккаунтов и кампаний с разбивкой по необходимым срезам. Это нужно было для дальнейшего планирования маркетинговой активности и более глубокого анализа всех РК.
У этой задачи было несколько целей:
собрать статистику по всем рекламным каналам в одном сводном отчете;
отслеживать маркетинговые бизнес-показатели в срезах по типам кампаний, категориям;
добавить план/факт-показатели и настроить ежедневное обновление данных, автоматизировав процесс;
визуализировать различные данные из разных источников;
снизить время загрузки отчета.
При выполнении задачи клиента мы столкнулись с несколькими сложностями:
При работе над проектом — она заняла у нас месяц: с 15 октября по 15 ноября 2020 года — все решения этих сложностей мы нашли.
Изначально данные по всем источникам обоих сайтов собирались в Google Data Studio. Мы решили не менять сервис, но модернизировать и масштабировать отчетность.
Google Data Studio — инструмент, который помогает маркетологам анализировать эффективность рекламных кампаний и делать выводы. Чтобы узнать все важные показатели, не обязательно открывать в разных вкладках Google Analytics, CRM, статистику социальных сетей и Google Таблицу с таймингом. В Data Studio все эти источники данных можно свести в одном отчете.
Прежде чем изменять и пересобирать отчет, необходимо было подготовить кампании — привести их названия к единому формату. Кампании переименовали по следующему принципу:
все смысловые части названия кампании должны быть отделены символом подчеркивания _;
количество частей, отделяемых подчеркиванием, должно быть одинаковым;
смысловые части должны стоять в одной и той же последовательности в названиях всех РК.
Эти изменения обеспечивают корректное отображение данных и дают возможность делать срезы по любому параметру, вынесенному в название кампании.
Так как мы переименовали кампании, пришлось менять и UTM-метки. Из-за этого в системах аналитики данные начали собираться заново, с новыми названиями кампаний.
Было | Стало |
spoti_obshaya_rf_poisk | category_spot_rf_search |
bra-top-collectoin_obshaya_msk-spb_poisk | category_bra_msk_search |
category_bra_spb_search |
Так мы получили срезы по категориям и типам кампаний с данными из Google Analytics и рекламных аккаунтов с доходами и расходами в графическом виде. Теперь специалисты могут быстро оценивать эффективность кампаний в разрезе бренда или категории товаров.
С разбивкой по геотаргетингу.
Следующая задача заключалась в интеграции со сводным дашбордом всех рекламных источников: Яндекс.Директа, Google Ads, Яндекс.Маркета, «ВКонтакте», Facebook, Admitad, Criteo, myTarget, и позже GdeSlon.
Отдел аналитики использует сервис Renta, с помощью которого извлекает данные большинства популярных рекламных площадок в ClickHouse, Google BigQuery или MS SQL. Данные с площадок, которые не поддерживаются сервисом, например, Admitad, специалисты забирают с помощью кастомных коннекторов к API, написанных на Python. Затем данные передаются в Google BigQuery — облачную базу данных с высочайшей скоростью обработки огромных массивов данных.
Так как партнерская сеть Admitad работает по постоплате, возникли сложности с отображением в отчете расхода по этому каналу. Вместе с клиентом мы решили выводить все необходимые показатели сразу и с небольшим временным лагом показатель «Стоимость».
Проектная команда MediaGuru занимается продвижением не только интернет-магазина, но и розничных офлайн-магазинов Regenbogen. Поэтому кампании розничных точек и РК интернет-магазина находятся в разных аккаунтах Яндекс.Директа и Google Ads. Но все данные собраны в отчете и благодаря фильтрам можно оценивать работу рекламы.
Изначально в отчет в Data Studio не попали данные по кампаниям без ключевых слов в Google Ads: Discovery, локальная реклама и GSP. Нам нужно было получить статистику по кликам, CPC и расходам.
Мы решили отказаться от группировки по фразам на первой странице отчета, как это было ранее, и сделать агрегированную таблицу по кампаниям. Так, мы вывели на отдельную страницу отчет по ключевым фразам, а на первой странице оставили данные только по кампаниям. После этого все имеющиеся кампании отображались корректно.
Медиапланирование играет важную роль в продвижении, но ежедневно сводить вручную запланированные и фактические показатели довольно трудозатратно. Мы решили автоматизировать этот процесс и вывести нужные показатели на отдельной странице в Data Studio. Для этого мы:
добавили все необходимые «плановые» метрики в Google Таблицу;
связали таблицу с отчетом в Data Studio: сначала скриптом на Python выгрузили плановые показатели в BigQuery;
настроили фильтр с датами, предварительно сведя таблицы с фактическими и плановыми показателями.
Теперь мы можем оценить текущие показатели и мгновенно реагировать, если метрики не соответствуют плану. Сейчас отчет выглядит так:
В перспективе планируем преобразовать отчет: сейчас он разделен на две таблицы и оценивать эффективность источников трафика не очень удобно. Мы скомпонуем данные в одну сводную таблицу.
Чтобы упростить оценку и сделать отчет более наглядным, добавили графики доходов и расходов по источникам.
Снизили время загрузки отчета благодаря добавлению запланированного запроса в BigQuery через Schedule Query.
Запланированные запросы — стандартная механика в Google BigQuery, которая позволяет автоматически делать SELECT всего содержимого исходного представления, а результат сохранять в таблицу-источник для дашборда. Таким образом, раз в сутки происходит обновление таблицы, и при использовании элементов дашборда Data Studio не формирует таблицу с помощью запроса, а обращается к уже готовой таблице. Это делает обновление данных на страницах почти моментальным.
За месяц мы собрали все каналы в одном отчете, вывели стоимость и другие данные, добавив прозрачности в рекламе для клиента. Кроме того, ускорили загрузку отчета.
Сводный отчет позволяет детальнее анализировать данные, получать необходимые срезы, а также мгновенно реагировать на изменение метрик и показателей, например, вовремя увидеть, что ДРР выходит за рамки плана.
Теперь специалисты Regenbogen могут делать выводы относительно эффективности рекламных кампаний, даже если не обладают нужными digital-навыками.
На исследование основных показателей в Яндекс Метрике достаточно одного часа. В статье мы покажем, как находить эти показатели и объясним,…
Рассказываем, какие интересные и полезные исследования вышли в мае 2022 года. Какие каналы для общения с клиентами выбирает бизнес —…
В мае Яндекс увеличил количество мест в товарной галерее и добавил два новых формата Большого баннера на главной. Директ…
Я пришел в digital 11 лет назад, когда учился в аспирантуре института биоорганической химии им. академиков М. М. Шемякина и Ю. А. Овчинникова. Тогда я просто…
Как сформулировать CTA, решает общий контекст коммуникации с пользователем. Какая формулировка сработает лучше, определяет тестирование. Но что…
Магазины в Telegram уже были давно. Как они выглядят и насколько удобны — другой вопрос. Некоторые из них — просто…